Senin, 15 Desember 2014

CPU : SISTEM BUS DAN ALU



CPU 

CPU merupakan singkatan dari Central Prosessor Unit yang sering diartikan oleh manusia sebagai tubuh maupun dari otak sikomputer.
Selain dapat mengolah berbagai hitungan Aritmatika, CPU juga dapat mengolah data-data yang telah masuk kedalam komputer dan menyimpannya kedalam hardisk maupun alat penyimpanan lainnya melalui perintah prosessor yang ada di CPU. CPU sendiri terbuat dari lempengan yang berbahan silicon yang terdiri atas 10 juta transitor yang biasa disebut “chip”. Perkembangan CPU dari waktu ke waktu semakin meningkat. Awal munculnya processor, yakni hadir dengan microprocessornya yang di buat oleh INTEL, satu-satunya produsen pada masa itu untuk pembuatan processor. Namun, sekarang ini sudah banyak perusahaan-perusahaan yang membuat processor.


Pengertian ALU (Arithmatic Logical Unit)

Arithmatic Logical Unit (ALU), adalah komponen dalam sistem komputer yang berfungsi melakukan operasi perhitungan aritmatika dan logika (Contoh operasi aritmatika adalah operasi penjumlahan dan pengurangan, sedangkan contoh operasi logika adalah logika AND dan OR. ALU bekerja besama-sama memori, di mana hasil dari perhitungan di dalam ALU di simpan ke dalam memori. Adapun alur proses dari ALU yang ditunjukan oleh gambar dibawah ini:

Perhitungan dalam ALU menggunakan kode biner, yang merepresentasikan instruksi yang akan dieksekusi (opcode) dan data yang diolah (operand). ALU biasanya menggunakan sistem bilangan biner two’s complement. ALU mendapat data dari register. Kemudian data tersebut diproses dan hasilnya akan disimpan dalam register tersendiri yaitu ALU output register, sebelum disimpan dalam memori. Processor terdiri dari  4 elemen yang melakukan sistem operasi terhadap data, 4 elemen itu adalah instruksi, petunjuk instruksi, beberapa register dan ALU (Arithmetic Logic Unit). Adalah sebuah petunjuk instruksi akan memberi tahu processor dimana instruksi dari sebuah aplikasi diletakkan di memori. 



Penjelasan Cara processor melakukan tugas :

Penunjuk instruksi mengarahkan fetch instruksi ke sebuah spot di memori yang menampung sebuah instruksi. Fetch kemudian membaca instruksi tersebut dan memberikannya ke dekoder instruksi, kemudian mengamati instruksi tersebut dan menentukan langkah selanjutnya untuk melengkapi instruksi tersebut. Kemudian ALU mengerjakan perintah yang diminta instruksi seperti : menambah data, membagi data, atau memanipulasi data yang ada. Setelah itu processor akan menerjemahkan dan mengerjakan instruksi, unit kontrol memberitahukan fetch instruksi untuk menangkap instruksi berikutnya di memori. Proses akan ini berlangsung terus menerus, dari satu instruksi ke instruksi berikutnya, dalam suatu langkah yang rumit, untuk menciptakan hasil yang diingikan dan dapat dilihat di monitor. Untuk meyakinkan semua itu berjalan dalam satu kesatuan waktu, bagian itu memerlukan suatu clock generator. Clock generator meregulasi setiap langkah yang dikerjakan processor. Seperti sebuah metronome, sebuah clock generator mengirim pulsa-pulsa elektrik untuk menentukan langkah yang harus dikerjakan processor. Pulsa tersebut diukur dalam jutaan langkah per detik, atau megahertz, yang dikenal sebagai ukuran kecepatan processor. Semakin banyak pulsa dibuat, semakin cepat kerja processor. 
Untuk meningkatkan kinerja komputer, pembuat chip processor menempatkan sebuah Arithmetic Logic Unit (ALU) di dalam processor. Secara teoritis ini berarti pemrosesan dapat dilakukan dua kali lebih cepat dalam satu langkah. Sebagai tambahan multiple ALU, kemudian diintegrasikan Floating Point Unit ke dalam processor. FPU ini menangani angka dari yang paling besar hingga yang paling kecil (yang memiliki banyak angka di belakang koma). Sementara FPU menangani kalkulasi semacam itu, ALU menjadi bebas untuk melakukan tugas lain dalam waktu yang bersamaan, untuk meningkatkan kinerja. Processor menambah kecepatan pemrosesan instruksi dengan melakukan pipelining instruksi, atau menjalankan instruksi secara paralel satu dengan yang lainnya. Eksekusi dari sebuah instruksi memerlukan langkah yang terpisah, contoh : fetching dan dekoding sebuah instruksi. Processor harus menyelesaikan sebuah instruksi secara keseluruhan sebelum melanjutkan ke instruksi berikutnya. Sekarang sirkuit yang berbeda menangani langkah yang terpisah tersebut. Begitu sebuah instruksi telah selesai dalam satu langkah untuk dilanjutkan ke langkah berikutnya, transistor yang mengerjakan langkah pertama bebas untuk mengerjakan instruksi berikutnya, sehingga akan mempercepat kerja pemrosesan. Sebagai tambahan untuk meningkatkan kinerja processor adalah dengan memprediksi cabang-cabang instruksi, yaitu memperkirakan lompatan yang akan dilakukan sebuah program dapat dilakukan; eksekusi secara spekulatif, yaitu mengeksekusi cabang instruksi yang ada di dapat; dan penyelesaian tanpa mengikuti urutan, yakni kemampuan untuk menyelesaikan sebuah seri instruksi tidak berdasarkan urutan normal.



 Sistem BUS

Pengertian Sistem Bus 

Bus adalah Jalur komunikasi yang dibagi pemakai Suatu set kabel tunggal ,digunakan untuk menghubungkan berbagai subsistem. Karakteristik penting sebuah bus adalah bus merupakan media transmisi yang dapat digunakan bersama. Sejumlah perangkat yang terhubung ke bus dan suatu sinyal yang ditransmisikan oleh salah satu perangkat ini dapat ditermia oleh salah satu perangkat yang terhubung ke bus.Bila 2 buah perangkat melakukan transmisi dalam waktu yang bersamaan, maka sinyal-sinyalnya akan bertumpang tindih dan menjadi rusak. Dengan demikain, hanya sebuah perangkat saja yang akan berhasil melakukan transimi pada suatu saat tertentu. Sistem komputer terdiri dari sejumlah bus yang berlainan yang menyediakan jalan antara dua buah komponen pada bermacam-macam tingkatan hirarki sistem komputer. Suatu Komputer tersusun dari beberapa komponen penting seperti CPU, memori, perangkat Input/Output. setiap computer saling berhubungan membentuk kesatuan fungsi. Sistem bus adalah  sebagai penghubung bagi keseluruhan komponen komputer dalam menjalankan tugasnya. Transfer data antar komponen komputer sangatlah mendominasi kerja suatu computer. Data atau program yang tersimpan dalam memori dapat diakses dan dieksekusi CPU melalui perantara bus, begitu juga kita dapat melihat hasil eksekusi melalui monitor juga menggunakan sistem bus. Pada sistem komputer yang lebih modern, arsitektur komputernya  akan  lebih kompleks, sehingga dapat untuk meningkatkan  performa, digunakan beberapa buah bus. Tiap bus merupakan jalur data antara beberapa device yang berbeda. Dengan cara ini RAM, Prosesor, GPU (VGA AGP) dihubungkan oleh bus utama berkecepatan tinggi yang lebih dikenal dengan nama FSB (Front Side Bus) . Sementara perangkat lain yang lebih lambat dihubungkan oleh bus yang berkecepatan lebih rendah yang terhubung dengan bus lain yang lebih cepat sampai ke bus utama. Untuk komunikasi antar bus ini digunakan sebuah bridge.
Karakteristik Bus adalah :
1.    Jumlah Interupsi Menentukan banyak perangkat independen yang melakukan I/O.
2.    Ukuran bus data eksteral berakibat pada kecepatan operasional I/O.
3.    Ukuran bus alamat menentukan banyak memori yang ditunjuk board ekspansi.
4.    Kecepatan clock maksimum yang dapat diakomadasi bus berakibat pada kinerja.


Struktur Bus

            Sebuah bus sistem terdiri dari 50 hingga 100 saluran yang terpisah. Masing-masing saluran ditandai dengan arti dan fungsi khusus. Walaupun terdapat sejumlah rancangan bus yang berlainan, fungsi saluran bus dapat diklasifikasikan menjadi tiga kelompok, yaitu saluran data, saluran alamat, dan saluran kontrol. Selain itu, terdapat pula saluran distribusi daya yang memberikan kebutuhan daya bagi modul yang terhubung.

Interkoneksi Bus.
1.   Bus Data
Jalur data yang dilalu informasi ke dan dari  mikroprosesor data bus. Adalah jalurjalur perpindahan data antar modul dalam sistem komputer. Karena pada suatu saat tertentu masingmasing saluran hanya dapat membawa 1 bit data, maka jumlah saluran menentukan jumlah bit yang dapat ditransfer pada suatu saat. Lebar data bus ini menentukan kinerja sistem secara keseluruhan. Misalnya, bila bus data lebarnya 8 bit, dan setiap instruksi panjangnya 16 bit, maka CPU harus dua kali mengakses modul memori dalam setiap siklus instruksinya. Sifatnya bidirectional, artinya CPU dapat membaca dan menirma data melalui data bus ini. Data bus biasanya terdiri atas 8, 16, 32, atau 64 jalur paralel, jumlah saluran diartikan dengan lebar bus data.
2.   Address Bus
Digunakan untuk menandakan lokasi sumber ataupun tujuan pada proses transfer data. Pada jalur ini, CPU akan mengirimkan alamat memori yang akan ditulis atau dibaca. Misalnya, bila CPU akan membaca sebuah word data dari memori, maka CPU akan menaruh alamat word yang dimaksud pada saluran alamat. Lebar bus alamat akan menentukan kapasitas memori maksimum sistem. Address bus biasanya terdiri atas 16, 20, 24, atau 32 jalur paralel. Lebar bus alamat akan menentukan kapasitas memori maksimum sistem. Selain itu, umumnya saluran alamat juga dipakai untuk mengalamati port-port input/outoput
3.   Control Bus
Digunakan untuk mengontrol penggunaan serta akses ke Data Bus dan Address Bus. Karena data dan saluran alamat dipakai bersama oleh seluruh komponen, maka harus ada alat untuk mengontrol penggunaannya. Sinyal-sinyal kontrol melakukan transmisi baik perintah maupun informasi pewaktuan diantara modul-modul sistem. Sinyal-sinyal pewaktuan menunjukkan validitas data dan informasi alamat. Sinyal-sinyal perintah mespesifikasikan operasi-operasi yang akan dibentuk. Umumnya saluran kontrol meliputi : memory write, memory read, I/O write, I/O read. Terdiri atas 4 samapai 10 jalur paralel.


sumber :

http://id.wikipedia.org/wiki/ALU
http://id.scribd.com/doc/137705503/Pengertian-ALU
http://nurdinfirmansyah2.blogspot.com
http://dwianti27.blogspot.com/2012/06/bus-dan-sistem-bus.html
http://bebexztaja.blogspot.com/2012/04/fungsi-bus-penjelasan-data-bus-address.html

ARSITEKTUR SET INSTRUKSI DAN DESIGN SET INSTRUKSI

  
1.ARSITEKTUR SET INSTRUKSI.

 Instruction Set Architecture (ISA) didefinisikan sebagai suatu aspek dalamarsitektur komputer yang dapat dilihat oleh para pemrogram. Secara umum, ISA ini mencakup jenis data yang didukung, jenis instruksiyang dipakai, jenis registermode pengalamatanarsitektur memori, penanganan interupsieksepsi, dan operasi I/O eksternalnya (jika ada).
ISA merupakan sebuah spesifikasi dari kumpulan semua kode-kode biner (opcode) yang diimplementasikan dalam bentuk aslinya (native form) dalam sebuah desain prosesor tertentu. Kumpulan opcode tersebut, umumnya disebut sebagai bahasa mesin (machine language) untuk ISA yang bersangkutan. ISA yang populer digunakan adalah set instruksi untuk chip Intel x86IA-64IBM PowerPC,Motorola 68000Sun SPARCDEC Alpha, dan lain-lain.

A.JENIS INSTRUKSI.

  • Data Processing/Pengolahan Data: instruksi-instruksi aritmetika dan logika.
  • Data Storage/Penyimpanan Data: instruksi-instruksi memori.
  • Data Movement/Perpindahan Data: instruksi I/O.
  • Control/Kontrol: instruksi pemeriksaan dan percabangan.
Instruksi aritmetika (arithmetic instruction) memiliki kemampuan untuk mengolah data numeric. Sedangkan instruksi logika (logic instruction) beroperasi pada bit-bit word sebagai bit, bukan sebagai bilangan. Operasi-operasi tersebut dilakukan terutama dilakukan untuk data di register CPU.

Instruksi-inslruksi memori diperlukan untuk memindah data yang terdapat di memori dan register.

Instruksi-instruksi I/O diperlukan untuk memindahkan program dan data kedalam memori dan mengembalikan hasil komputasi kepada pengguna.

Instruksi-instruksi control digunakan untuk memeriksa nilai data, status komputasi dan mencabangkan ke set instruksi lain.

B.TEKNIK PENGALAMATAN.

Metode pengalamatan merupakan aspek dari set instruksi arsitekturdi sebagian unit pengolah pusat(CPU) desain yang didefinisikan dalam set instruksi arsitektur dan menentukan bagaimana bahasa mesinpetunjuk dalam arsitektur untuk mengidentifikasi operan dari setiap instruksi.. Sebuah mode pengalamatan menentukan bagaimana menghitung alamat memori yang efektif dari operand dengan menggunakan informasi yang diadakan di registerdan / atau konstanta yang terkandung dalam instruksi mesin atau di tempat lain.

Jenis-jenis metode pengamatan
A.Direct Absolute(pengalamatan langsung).

Hal ini membutuhkan ruang dalam sebuah instruksi untuk cukup alamat yang besar.. Hal ini sering tersedia di mesin CISC yang memiliki panjang instruksi variabel, seperti x86.. Beberapa mesin RISC memiliki Literal khusus Atas instruksi Load yang menempatkan sebuah 16-bit konstan di atas setengah dari register.. Sebuah literal instruksi ATAUdapat digunakan untuk menyisipkan 16-bit konstan di bagian bawah mendaftar itu, sehingga alamat 32-bit kemudian dapat digunakan melalui mode pengalamatan tidak langsung mendaftar, yang itu sendiri disediakan sebagai "base- plus-offset "dengan offset 0.

B.Immidiate.

Bentuk pengalamatan ini yang paling sederhana
·                     Operand benar-benar ada dalam instruksi atau bagian dari instruksi = operand sama dengan field alamat
·                     Umumnya bilangan akan disimpan dalam bentuk kompleent dua
·                     Bit paling kiri sebagai bit tanda
·                     Ketika operand dimuatkan ke dalam register data, bit tanda digeser ke kiri hingga maksimum word data Contoh: ADD 5 ; tambahkan 5 pada akumulator.

C.Indirect register.

·                     Metode pengalamatan register tidak langsung mirip dengan mode pengalamatan tidak langsung
·                     Perbedaannya adalah field alamat mengacu pada alamat register.
·                     Letak operand berada pada memori yang dituju oleh isi register
·                     Keuntungan dan keterbatasan pengalamatan register tidak langsung pada dasarnya sama dengan pengalamatan tidak langsung
Keterbatasan field alamat diatasi dengan pengaksesan memori yang tidak langsung sehingga alamat yang dapat direferensi makin banyak Dalam satu siklus pengambilan dan penyimpanan, mode pengalamatan register tidak langsung hanya menggunakan satu referensi memori utama sehingga lebih cepat daripada mode pengalamatan tidak langsung.

D.Indirect- memori.

Salah satu mode pengalamatan yang disebutkan dalam artikel ini bisa memiliki sedikit tambahan untuk menunjukkan pengalamatan tidak langsung, yaitu alamat dihitung menggunakan modus beberapa sebenarnya alamat dari suatu lokasi (biasanya lengkap kata) yang berisi alamat efektif sebenarnya. Pengalamatan tidak langsung dapat digunakan untuk kode atau data.. Hal ini dapat membuat pelaksanaan pointer ataureferensi atau menanganilebih mudah, dan juga dapat membuat lebih mudah untuk memanggil subrutin yang tidak dinyatakan dialamati. Pengalamatan tidak langsung tidak membawa hukuman performansi karena akses memori tambahan terlibat.
Beberapa awal minicomputer (misalnya Desember PDP-8, Data General Nova) hanya memiliki beberapa register dan hanya rentang menangani terbatas (8 bit).Oleh karena itu penggunaan memori tidak langsung menangani hampir satu-satunya cara merujuk ke jumlah yang signifikan dari memori.

E.Register.

Pada beberapa komputer, register dianggap sebagai menduduki 16 pertama 8 atau kata-kata dari memori (misalnya ICL 1900, DEC PDP-10).. Ini berarti bahwa tidak perlu bagi yang terpisah "Tambahkan register untuk mendaftarkan" instruksi - Anda hanya bisa menggunakan "menambahkan memori untuk mendaftar" instruksi. Dalam kasus model awal PDP-10, yang tidak memiliki memori cache, Anda benar-benar dapat memuat sebuah loop dalam ketat ke dalam beberapa kata pertama dari memori (register cepat sebenarnya), dan berjalan lebih cepat daripada di memori inti magnetik. Kemudian model dari DEC PDP-11seri memetakan register ke alamat di output / area input, tetapi ini ditujukan untuk memungkinkan diagnostik terpencil. register 16-bit dipetakan ke alamat berturut-turut byte 8-bit.

F.Index.

Indexing adalah field alamat mereferensi alamat memori utama, dan register yang direferensikan berisi pemindahan positif dari alamat tersebut
·                     Merupakan kebalikan dari mode base register
·                     Field alamat dianggap sebagai alamat memori dalam indexing
·                     Manfaat penting dari indexing adalah untuk eksekusi program-program iteratif

G.Base index.

Base index, register yang direferensi berisi sebuah alamat memori, dan field alamat berisi perpindahan dari alamat itu Referensi register dapat eksplisit maupun implicit.Memanfaatkan konsep lokalitas memori

H.Base index plus offset.

Offset biasanya nilai 16-bit masuk (walaupun 80386 diperluas ke 32 bit). Jika offset adalah nol, ini menjadi contoh dari register pengalamatan tidak langsung, alamat efektif hanya nilai dalam register dasar. Pada mesin RISC banyak, register 0 adalah tetap sebesar nilai nol.. Jika register 0 digunakan sebagai register dasar, ini menjadi sebuah contoh dari pengalamatan mutlak.. Namun, hanya sebagian kecil dari memori dapat diakses (64 kilobyte, jika offset adalah 16 bit). 16-bit offset mungkin tampak sangat kecil sehubungan dengan ukuran memori komputer saat ini (yang mengapa 80386 diperluas ke 32-bit).. Ini bisa lebih buruk: IBM System/360 mainframe hanya memiliki 12-bit unsigned offset.. Namun, prinsip berlaku: selama rentang waktu yang singkat, sebagian besar item data program ingin mengakses cukup dekat satu sama lain. Mode pengalamatan ini terkait erat dengan mode pengalamatan terindeks mutlak. Contoh 1: Dalam sebuah sub rutin programmer terutama akan tertarik dengan parameter dan variabel lokal, yang jarang akan melebihi 64 KB, yang satu basis register (yang frame pointer) sudah cukup. Jika rutin ini adalah metode kelas dalam bahasa berorientasi objek, kemudian register dasar kedua diperlukan yang menunjuk pada atribut untuk objek saat ini (ini atau diri dalam beberapa bahasa tingkat tinggi). Contoh 2: Jika register dasar berisi alamat dari sebuah tipe komposit (record atau struktur), offset dapat digunakan untuk memilih field dari record (catatan paling / struktur kurang dari 32 kB).

I.Relatif.

PengalamatanRelative, register yang direferensi secara implisit adalah program counter (PC)Alamat efektif didapatkan dari alamat instruksi saat itu ditambahkan ke field alamat Memanfaatkan konsep lokalitas memori untuk menyediakan operand-operand berikutnya.

C.DESAIN SET INSTRUKSI.

Desain set instruksi merupakan masalah yang sangatkomplek yang melibatkan banyak aspek, diantaranya adalah:1. Kelengkapan set instruksi2. Ortogonalitas (sifat independensi instruksi)3. Kompatibilitas :
- source code compatibility 
- Object code Compatibility 
 Selain ketiga aspek tersebut juga melibatkan hal-hal sebagaiberikut :
a. Operation Repertoire 
: Berapa banyak dan operasiapa saja yang disediakan, dan berapa sulitoperasinya
b. Data Types 
: tipe/jenis data yang dapat olah
c. Instruction Format 
: panjangnya, banyaknya alamat,dsb.
d. Register: 
Banyaknya register yang dapat digunakan
e.
Addressing: Mode pengalamatan untuk operand

2.CENTRAL PROCESSING UNIT.
A.SISTEM BUS.

Sebuah bus biasanya terdiri atas beberapa saluran. Sebagai contoh bus data terdiri atas 8 saluran sehingga dalam satu waktu dapat mentransfer data 8 bit. Secara umum fungsi saluran bus dikatagorikan dalam tiga bagian, yaitu saluran data, saluran alamat dan saluran control. Saluran data(data bus) adalah lintasan bagi perpindahan data antar modul. Secara kolektif lintasan ini disebut bus data. Umumnya jumlah saluran terkait dengan panjang word, misalnya 8, 16, 32 saluran dengan tujuan agar mentransfer word dalam sekali waktu. Jumlah saluran dalam bus data dikatakan lebar bus, dengan satuan bit, misal lebar bus 16 bit.

B.ARITHMATIC LOGIC UNIT.

ALU merupakan bagian dari CPU yang bertugas untuk melakukan operasi aritmetika dan operasi logika berdasar instruksi yang ditentukan. ALU sering di sebut mesin bahasa karena bagian ini ALU terdiri dari dua bagian, yaitu unit aritmatika dan unit logika boolean yang masing-masing memiliki spesifikasi tugas tersendiri. Tugas utama dari ALU adalah melakukan semua perhitungan aritmatika (matematika) yang terjadi sesuai dengan instruksi program. ALU melakukan semua operasi aritmatika dengan dasar penjumlahan sehingga sirkuit elektronik yang digunakan disebut adder.

Tugas lain dari ALU adalah melakukan keputusan dari suatu operasi logika sesuai dengan instruksi program. Operasi logika meliputi perbandingan dua operand dengan menggunakan operator logika tertentu, yaitu sama dengan (=), tidak sama dengan (¹ ), kurang dari (<), kurang atau sama dengan (£ ), lebih besar dari (>), dan lebih besar atau sama dengan (³ ).


C.CENTRAL LOGIC UNIT.

CLU pada komputer memasukkan informasi tentang instruksi dan mengeluarkan baris kendali yang diperlukan untuk mengaktifkan operasi-mikro yang semestinya. CLU terbentuk atas sebuah prosesor instruksi (IP atau instruction processor) yang berfungsi untuk mengendalikan fetch, perhitungan alamat dan siklus interupsi, kemudian prosesor aritmatika (AP atau arithmatic processor) yang berfungsi untuk mengendalikan siklus eksekusi bagi operasi aritmatika dan logika.

D.SET REGISTER.

Prosesor memiliki 16 register 16 bit , meskipun hanya 12 dari mereka adalah tujuan yang benar-benar umum. Empat pertama telah mendedikasikan menggunakan :
A.r0 (alias PC) adalah program counter ,anda bisa melompat dengan menentukan r0,dan konstanta yang diambil langsung dari aliran instruksi menggunakan pasca-kenaikan mode pengalamatan r0.
B.r1 (alias SP) adalah stack pointer . ini di gunakan oleh panggilan dan instruksi dorong , dan dengan penanganan interupsi . hanya ada satu stack pointer ; MSP430 tidak memiliki apapun yang menyerupai mode supervisor. Pointer stack selalu tidak jelas apakah LSB bahkan diimplementasikan.
C.r2 (alias SR) adalah register status.
D.ini didesain untuk 0. Jika ditetapkan sebagai sumber , nilainya adalah 0. Jika ditetapkan sebagai tujuan, nilai tersebut aka dibuang.
-CONTROL REGISTER
Adalah prosesor yang mengubah atau mengontrol CPU atau perangkat digital lainya. Tugas dari control register adalah untuk mengontrol setiap alamat yang ada di cpu dan untuk switching mode pengalamatan.

E.CACHE MEMORY.

Cache berasal dari kata cash. Dari istilah tersebut cache adalah tempat menyembunyikan atau tempat menyimpan sementara. Sesuai definisi tersebut cache memori adalah tempat menympan data sementara. Cara ini dimaksudkan untuk meningkatkan transfer data dengan menyimpan data yang pernah diakses pada cache tersebut, sehingga apabila ada data yang ingin diakses adalah data yang sama maka maka akses akan dapat dilakukan lebih cepat.Cache memori ini adalah memori tipe SDRAM yang memiliki kapasitas terbatas namun memiliki kecepatan yang sangat tinggi dan harga yang lebih mahal dari memori utama. Cache memori ini terletak antara register dan RAM (memori utama) sehingga pemrosesan data tidak langsung mengacu pada memori utama.


F.VIRTUAL MEMORY.

Pengertian dari Virtual memory itu sendiri yakni memori sementara yang digunakankomputer untuk menjalankan berbagai program aplikasi ataupun menyimpan data yang membutuhkan memory yang lebih besar dari memory yang telah tersedia.
Program ataupun data yang tidak muat dimasukan pada memory asli ( RAM ), akan disimpan ke dalam sebuah Pagging File.
Fungsi Virtual Memory ialah untuk mengoptimalkan kinerja dari komputer, dengan tambahan memory, maka kemungkinan terjadi crash sangat kecil sekali.
Ukuran dari paging file biasanya berbeda – beda.
Untuk ukuran paging file linux ialah 2 kali lipat dari memory aslinya. Misalkan kita memakai memory berkapasitas 512 MB, maka ukuran paging filenya yaitu 1 GB. Walaupun tidak harus 2 GB, tapi untuk memaksimalkan kinerja maka sebaiknya 2 kali lipatnya.
Untuk ukuran paging file di windows XP dan Vista Yaitu 1,5 kali dari kapasitas aslinya. Misalkan kita menggunakan memory sebesar 1 GB, maka paging filenya sebesar 1,5 GB. Dalam Xp maupun Vista paging file ini dinamai dengan pagefile.sys bila kita ingin mencarinya, pasti tidak akan ketemu, karena file ini disembunyikan atau hidden files.


sumber :

  http://missnuroxfordutomo.blogspot.com/2011/04/pengertian-cpu-dan-fungsinya.html